

BENHA UNIVERSITY FACULTY OF ENGINEERING (SHOUBRA) ELECTRONICS AND COMMUNICATIONS ENGINEERING

CCE 201 Solid State Electronic Devices (2022 - 2023) term 231

Lecture 0: Course Introduction.

Dr. Ahmed Samir https://bu.edu.eg/staff/ahmedsaied

Course Information and Evaluation

Course Introduction

Course Content

Course Information and Evaluation

Instructor:	Dr. Ahmed Samir
Lectures:	Monday
Textbooks:	 Adel Sedra and Kenneth C. Smith., Microelectronic circuits Textbook. S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Inc. (2007). Neamen D.A., (2007), Microelectronics Circuit Analysis and Design, McGraw Hill.
Credit:	100 Marks

Assessment Tools	Week	Weight
Midterm Examination	7	30 %
Final Examination	(As Schedule)	40 %
Quizzes	5	5 %
Home assignments	12	5 %
Mini Project	10	20 %
Total		100 %

3

Contact:

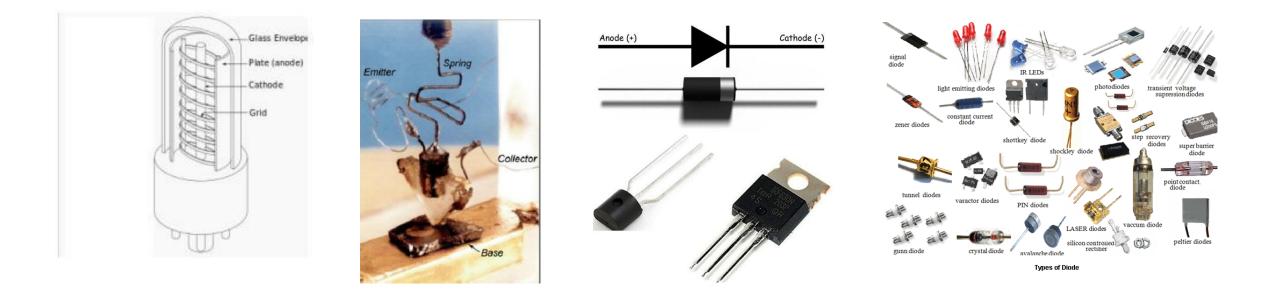
E-mail: <u>ahmed.saied@feng.bu.edu.eg</u>

□ Office hour: Monday.

Mobile: 011 5049 7002

Course Handout: <u>here</u>

4


Course Information and Evaluation

Course Introduction

Course Content

Course Introduction: Solid State Electronic Devices

- Solid-state electronics are those circuits or devices built entirely from solid materials and in which the electrons, or other charge carriers, are confined entirely within the solid material.
- The term is often used to contrast with the earlier technologies of vacuum and gas-discharge tube devices, and it is also conventional to exclude electromechanical devices (relays, switches, hard drives and other devices with moving parts) from the term solid state.

Course Information and Evaluation

Course Introduction

Course Content

Course Content: Solid State Electronic Devices

The course consists of the following parts:

1) Semiconductor physics

- > The characteristics of conductors, insulators and semiconductors.
- > The doping in semiconductors
- Intrinsic & extrinsic Fermi level

2) Currents in Semiconductor:

- Drift current
- Diffusion current
- **3)** PN junction .
- 4) Diode characteristics.
- **5)** Diode applications.
 - > Rectifiers, Clipping circuits, Clamping Circuits, Multipliers
- 6) Special purpose diodes and its applications.
- 7) Basics of Bipolar junction transistors (BJT).
- 8) Applications and analysis of BJT circuits.

Course Information and Evaluation

Course Introduction

Course Content

Course Spec. Solid State Electronic Devices

